The development and use of an ELISA-based method to follow the distribution of cellulase monocomponents during the hydrolysis of pretreated corn stover

نویسندگان

  • Amadeus Y Pribowo
  • Jinguang Hu
  • Valdeir Arantes
  • Jack N Saddler
چکیده

BACKGROUND It is widely recognised that fast, effective hydrolysis of pretreated lignocellulosic substrates requires the synergistic action of multiple types of hydrolytic and some non-hydrolytic proteins. However, due to the complexity of the enzyme mixture, the enzymes interaction with and interference from the substrate and a lack of specific methods to follow the distribution of individual enzymes during hydrolysis, most of enzyme-substrate interaction studies have used purified enzymes and pure cellulose model substrates. As the enzymes present in a typical "cellulase mixture" need to work cooperatively to achieve effective hydrolysis, the action of one enzyme is likely to influence the behaviour of others. The action of the enzymes will be further influenced by the nature of the lignocellulosic substrate. Therefore, it would be beneficial if a method could be developed that allowed us to follow some of the individual enzymes present in a cellulase mixture during hydrolysis of more commercially realistic biomass substrates. RESULTS A high throughput immunoassay that could quantitatively and specifically follow individual cellulase enzymes during hydrolysis was developed. Using monoclonal and polyclonal antibodies (MAb and PAb, respectively), a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) was developed to specifically quantify cellulase enzymes from Trichoderma reesei: cellobiohydrolase I (Cel7A), cellobiohydrolase II (Cel6A), and endoglucanase I (Cel7B). The interference from substrate materials present in lignocellulosic supernatants could be minimized by dilution. CONCLUSION A double-antibody sandwich ELISA was able to detect and quantify individual enzymes when present in cellulase mixtures. The assay was sensitive over a range of relatively low enzyme concentration (0 - 1 μg/ml), provided the enzymes were first pH adjusted and heat treated to increase their antigenicity. The immunoassay was employed to quantitatively monitor the adsorption of cellulase monocomponents, Cel7A, Cel6A, and Cel7B, that were present in both Celluclast and Accellerase 1000, during the hydrolysis of steam-pretreated corn stover (SPCS). All three enzymes exhibited different individual adsorption profiles. The specific and quantitative adsorption profiles observed with the ELISA method were in agreement with earlier work where more labour intensive enzyme assay techniques were used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific

BACKGROUND Currently, the amount of protein/enzyme required to achieve effective cellulose hydrolysis is still too high. One way to reduce the amount of protein/enzyme required is to formulate a more efficient enzyme cocktail by adding so-called accessory enzymes such as xylanase, lytic polysaccharide monooxygenase (AA9, formerly known as GH61), etc., to the cellulase mixture. Previous work has...

متن کامل

The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

BACKGROUND Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of addition...

متن کامل

BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.

Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentrat...

متن کامل

Investigating biomass saccharification for the production of cellulosic ethanol

The production of second generation biofuels -cellulosic ethanol from renewable lignocellulosic biomass has the potential to lead the bioindustrial revolution necessary to the transition from a fossil fuel-based economy to a sustainable carbohydrate economy. Effective release of fermentable sugars through biomass pretreatment followed by enzymatic hydrolysis is among the most costly steps for e...

متن کامل

Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEX™, and ionic liquid pretreatments

BACKGROUND Pretreatment is essential to realize high product yields from biological conversion of naturally recalcitrant cellulosic biomass, with thermochemical pretreatments often favored for cost and performance. In this study, enzymatic digestion of solids from dilute sulfuric acid (DA), ammonia fiber expansion (AFEX™), and ionic liquid (IL) thermochemical pretreatments of corn stover were f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013